

PROGRAMME

- Problems with actual installations
- Gemex: components and methods
- The advantages of Gemex
- Practical examples
- Special applications with Gemex-solutions

PROGRAMMA

- Gemex: cost-benefit analysis
 - Energy
 - Comfort productivity safety
 - Longevity
 - Production stop

TRADITIONAL INSTALLATIONS

Actual situation:

The motor is placed on tension rulers.

For topmounted or vertically mounted drives some kind of an adjustable shelf is common.

TRADITIONAL INSTALLATIONS

CORRODED TENSION RULERS

ADJUSTABLE SHELF WITH TENSION RULERS

HANGING SHELF

ADJUSTABLE SHELF WITH VERTICAL TENSION RULERS

VERTICALLY ADJUSTABLE SHELF

TRADITIONAL INSTALLATIONS

Actual situation:

It is generally stated that well maintained belts with correct alignment and tension has a lifespan of 25 000 runtime hours. The theoretical efficiency is 97%.

Life span in practice!

- 30% has a life span of less than 5 000 hours.
- 50% has a life span of 5000-12 500 hours.
- 20% has a life span of 12 500 hours or more.

TRADITIONAL INSTALLATIONS

Premature belt wear – decreased efficiency

Causes: Incorrect alignment, wrong belt tension, accessibility, belt slips, priority of prodcution, corrosion, etc.

INCORRECT BELT TENSION AND ALIGNMENT

ACCESSIBILITY

CORROSION

TRADITIONAL WAY OF REPLACING THE BELTS: A CROWBAR

The shafts will bend due to an overdue of belt tension

• THREE COMPONENTS:

- a shelf, onto which the motor is placed
- one or two hydraulic cylinders, installed on the shelf
- a hydraulic pump with a manometer

- the chair tilts, the belts are loosened
- the hydraulic pump transforms the cylinders into a lift
- the manometer determines the correct belt tension
- the cylinders are mechanically locked
- the motor is locked by the mechanical-hydraulical cylinders
- No further alignment is needed !
- All moving parts are fully protected !
- Gemex cay be installed on all existing frames !

GEMEX TECHNOLOGY

GEMEX GUARANTEES

- A fast and efficient alignment and replacement of the belts
- An increased productivity of your technicians by 85%
- Reduced stops for belt replacement and general maintenance
- An extended longevity for belts, pulleys and bearings
- An excellent integration and installation on existing configurations
- Shorter and better interventions
- Possible energy savings up to 7%
- Safety

CONVEYOR BELT FOR THE CAR INDUSTRY

SOME EXAMPLES WITH AND WITHOUT GEMEX

VERTICALLY MOUNTED

Basic ingredients for energy saving:

- perfect alignment
- correct tension
- accessibility

Causes of energy waste

- outdated tools
- engineering vs. demands of efficiency and economy
- outdated methods of construction
- alignment and tension action at the same time
- priority to production
- production stops are unavoidable in case of a slip

- removal of belt covers
- corrosion
- accessibility
- lack of time
- production versus maintenance

- alignment at the time of installation
- alignment without belt tension
- no shaft bendings nor torsion

- motor will always be perfectly aligned
- belt tensioning AFTER the alignment
- calculation of the belt tension and certification

Customer gemex demo rammeloo	<u>Sender</u> Maintenance Partners rammeloo		
Drive Calculation	No.:000100	Page: 3	
V Belts 2 Pulley Drive	SN: 88117131	Date: 24.10.2002	
Calculations	Based on a theoretical belt life of	25000 h	

The drive requires:

- 4 pce(s) Optibelt-Super-TX wedge belt XPB 2800 Ld M=S

- Optibelt-KS pulley bored for taper bush TB SPB 200-4

- Optibelt-TB taper bush 3020 (Bore diameter 25-75 mm)

Optibelt-KS pulley bored for taper bush TB SPB 315-4
Optibelt-TB taper bush 3535 (Bore diameter 35-90 mm)

			Doviation/Hinto
T			Deviation/Hints
Type of driver unit	:		
Type of driven unit	:	*******	
Calculation Power	PB:	42.00 kW	
Driver Power	P:	30.00 kW	
Torque at driver pulley	M:	194 Nm	
Driver speed	n1:	1475 1/min	
Required driven speed	n2:	937 1/min	937 1/min
Datum diameter pulley 1	dd1:	200.00 mm	
Datum diameter pulley 2	dd2:	315.00 mm	
Datum length	Ld:	2800 mm	
Actual centres	C:	993.90 mm	******** mm
Actual drive ratio	i:	1.58	0.0 %
Adjustment required for belt fitting	y:	20.00 mm	
Adj. req. for belt tensioning	X:	35.00 mm	
Actual service factor	c2:	2.29	
Belt speed	V:	15.45 m/s	
Flex rate	fB:	11.03 1/s	
Power per belt	PN:	17.92 kW	
Arc of contact factor	c1:	1.00	
Belt length factor	c3:	0.96	
Arc of contact on small pulley	ß:	173.40 °	
Pulley face width	b:	82.0 mm	
span length	1:	992.20 mm	
calculated number of belts	z1:	2.44	actual c2 = 1.85
Weight	:	35.58 kg	
Static shaft load, initial installation	Sast:	5232 N	
Static shaft load (retensioning)	Samin:	4025 N	
Dynamic shaft load	Sadyn:	3760 N	

Tensioning recommendations		Initial installation Re-tension		
actual c2 = 1.85		new belts	existing belts	
1. OPTIKRIK II	Static tension per belt :	655 N	504 N	
2. Load/deflection tension gauge	Load at centre of span:	75 N	75 N	
	Deflection:	23 mm	28 mm	
3. Length addition value per 1000 mm belt length		******** mm	******** mm	
4. Optibelt-TT Tension Tester	Frequency:	30.2 1/s	26.4 1/s	

Belt tension checked with frequency system

ENERGY SAVINGS WITH GEMEX

- hydraulic pressure is measured through the Gemex manometer
- belt tensioning during the productions
- in case of a slip, belts may be tensioned while producing
- extensive accessibility
- scientific evidence shows a possible energy saving of 3% to 7% (study LKAB on 400 Gemex systems)

INCREASE PRODUCTIVITY OUTPUT

- increase a better output during productivity
- when belts are slipping, the tension can be adjusted while production is going on
- predictive maintenance

INCREASE PRODUCTIVITY

- shorten interventions
- accessability
- everyone can do the job
 - no special education is needed
- only one technican is needed to replace the belts

SAFETY

- no risc for injuries
- no special education, every technician can do the job
- can be installed on every existing frame
- at the time of maintenance the belts are loosen

INTERNATIONAL AWARDS

1996: 'Invention of the Year' in North-Sweden

1997: Golden medal at the Eureka '97 World Exhibition of Innovation, Research & New Technology in Brussels

Exclusive selection among more than 1000 licensed products

Extensive information files in the book 'Energy Efficiency Improvements in Electric Motors & Drives'

Springer

GEMEX IN A NUTSHELL

- Increased accessibility and availability
- Simple and efficient
- Shorter interventions
- Integration into existing configurations
- Energy savings
- Decreased costs of maintenance and manpower
- Safety

REFERENCES:

Kris Deckers/ 24september 88

Volkswagen Brussel N.V.

	instanatie van de Gemer motorstoen									
		MNV	MNH	MKA	MKV	MKH	VNA	VNV	VNH	
Voor	35 Hz	0.7	1.0	0.6	1.0	0.3	0.2	1.2	2.1	
	40 Hz	0.3	1.2	0.6	1.1	0.3	0.1	1.7	1.4	
	45 Hz	1.7	1.2	0.5	1.2	0.2	0.2	1.1	1.0	
	49 Hz	1.3	0.9	0.4	2.6	0.3	0.2	2.8	1.4	
Na	35 Hz	0.4	0.7	0.6	1.0	0.6	0.1	0.4	1.0	
	40 Hz	0.7	1.5	1.1	3.1	0.1	0.2	1.2	1.1	
	45 Hz	0.5	1.0	0.2	0.5	0.4	0.1	1.3	0.8	
	49 Hz	0.6	2.0	1.0	0.7	0.6	0.2	0.9	1.2	

Overzicht van onbalanstrillingen gemeten op motor en ventilator, voor en na installatie van de Gemex motorstoel.

Volgende figuren geven telkens voor alle meetpunten de verschillende metingen. Deze metingen werden uitgevoerd voor 4 verschillende snelheden (35 Hz, 40 Hz, 45 Hz en 49 Hz). De eerste 4 spectra onderaan tonen de toestand voor modificatie (respectievelijke snelheden 35, 40, 45 en 49 Hz). De volgende 4 spectra tonen de toestand na modificatie (met Gemex motorstoel).

Ford Genk Assembly plant building C

COMPONENT BULLETIN

PAINT PLANT

GENK

Part II: MECHANICAL COMPONENTS

Ż

BELTS

Continental, Contitech, Optibelt, Synchroflex

30 KW.

Gemex (standard for drives > 55 kW)

PUMPS

Centrifuge-pumps FF/EC (circulation-pumps): KSB, Egger ASH's heating pumps : KSB ASH's humidifying pumps : KSB, Grundfos Drum-pumps : Graco Dosing-pumps phosphate-EC : Sera High pressure-pumps : SIHI, KSB

BEARING

SKF

CHAINS

Wippermann Floor-conveyor : CC5 (see general Ford-specification) OHC-materiaal : CFC

STARTING-COUPLING

HOSES

Painthoses : Polypenco Compressed air : Phoenix Painthoses in Esta : Polypenco

HIGH PRESSURE MATERIAL

Thimm

Please visit our web ite:

www.ipt-gemex.com

Or contact us:

John.rammeloo@maintenancepartners.com

